Vortex Subdomains
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Abstract. The physical problem of the formation and evolution of vortices in fluids is
of great scientific interest. Vortices are known to form and occur in corners and near
separation points. Because the problem is biharmonic, even the motion of a slow

(Stokes, linearized) viscous incompressible fluid in a corner cannot be solved analyti-
cally.

Mathematical asymptotics and physical experiments indicate the existence of a
sequence, possibly infinite, of vortices descending into a corner. By a multigrid nested
subdomain scheme we have resolved twenty of these. This scheme has then been

adapted to unsteady flow over an airfoil. Examples and numerical considerations will
be given and discussed.

Fluid Dynamics and its mathematical description in terms of the Navier-Stokes equa-
tions are fundamental in theoretical and applied sciences including physics, aero-
dynamics, meteorology, oceanography and other basic sciences. In particular the phy-
sical problem of the formation and evolution of vortices in fluids is of great scientific -

interest. Its relation to dynamical instability led Lewis Richardson in his prophetic
book [1] to the renowned

big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity.

Richardson was describing cloud motions and goes on

because it is not possible to separate eddies into clearly
defined classes ... therefore a single coefficient is used to
represent the effect produced by eddies of all sizes.
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Earlier, Lord Rayleigh [2] attacked the problem mathematically, attempting the
analysis of the motion of a viscous incompressible fluid in a corner:

The general problem thus represented is one of great
difficulty, and all that will be attempted here is the con-
sideration of one or two particular cases. We inquire
what solutions are possible such that ), as a function of
r (the radius vector), is proportional to r™,

Even with his assumption of slow motion (Stokes) linearized equations, Rayleigh
was unable to fit the boundary conditions with his proposed solutions. The fact that
this (biharmonic) linear problem on a square still cannot be solved exactly has to be
an embarrassment to those of us working in fluids theory or in plate theory where it
also occurs.

Eventually, from ideas in plate theory, a series of papers led to that of Moffatt
[3], which under serious simplifying assumptions predicted an infinite sequence of
standing vortices descending into a corner of sufficiently small angle. Some of these
have been verified, e.g., up to a third corner vortex, in recent physical experiments,
Taneda [4], Fuchs and Tillmark [5]. Because these corner subvortices drop in intensity
like O(10™*), practioners of Stokes flow may not see them and in some case we have
found that practioners do not even believe in their existence!. Certainly the question
of how many of them really persist within the fluid breakdown process portrayed by
Lewis Richardson’s verse is an intriguing one, with many ramifications physically,
mathematically, computationally, perhaps philosophically, and certainly for important
applications.

In order to investigate both the computational and applications aspects of this
question of subvortex existence and structure, we developed a very robust multigrid
nested subdomain scheme. This nested subdomain scheme applied to Stokes flow in a
unit cavity is depicted in Figures 1 and 2. Convergence was excellent and we were
able [6] to report ten corner subvortices, by far the best resolution reported to that
date. These were obtained in a vectorized run on the Cyber 205 with a discretization
of 129 by 129 points and 40 nested subdomains, in under 15 CPU seconds.

Our results in [6] were limited by machine precision (recall the rapid O(107%)
subvortex intensity falloff), a glitch in the local 205 software that prevented efficient
vectorized grid lengths finer than (2'°—1)/2, and a rapid buildup in the number of
iterations needed as the subdomain size decreased as we nested down into the corner.
By using double precision accurate, residual-controlled code we can now report resolu-
tion of twenty corner subvortices.

The results for two grid discretizations M are shown in Table 1. The number of
grid poin.ts on a side of the computational domain is given by NP =2M L1 Our
algorithm employed an adaptive iteration strategy which maintained the residual
defined by:

Residual = [V2 + ] + V2]

below a pointwise tolerance of 107%. The number of iterations required increased as
the localization procedure progressed.
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Figure 1. Driven Cavity Flow, A=1.
1: Principal Vortex
2: Secondary Corner Vortex
3: Tertiary Corner Vortex

x_: Separation Point

x_: Provocation point

Note from Table 1 that the subvortices occur in a (essentially, self-similar)
sequence of subdomains of shrinking scale close to 27 One could take this into

account in assigning the nested subdomain decomposition. Our scheme simply halved
the domain size and then reapplied our residual-controlled multigrid scheme. Thus we
encountered a new vortex subdomain after (roughly) each four localizations.

Our present scheme does not yet employ any back and forth local-global sub-
domain interaction. This no doubt accounts for most of our difficulty in maintaining
accuracy on the subdomains. Because the problem is basically biharmonic, the ana-
Iytic theory of these vortex subdomains is also, generally speaking, quite lacunate on
this point. Further research on appropriate boundary values, optimal grid transfer
stencils, parallel subdomain processing, and needed domain decomposition overlap
would be important.
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Figuce 2(a) Interpolation Procedure

%——e&_—i_

’ T
=22 ! :
n} T 1

—moe x; Injected red grid pciots.

X: Remaining red grid points
interpolated using rotatad
difference equatiom.

Figure 2(b). Grid hierarchy for resolutiom Y Y I ¥v VY
of Moffatt vortices. | T i

| ! B

: L |

BNy

’ | RS

Figure 2(c). Grid hierarchy for resolution S L

P

of separation point, x, . N A A A

x: Red grid points

o: Interpolated black grid poincs

A Interpolated boundary poincs

X Boundary Interpclation Stencils:
- cover—
v | ¥
v g ———d
L -—_
Il ———— —_——
]
, > P—— A
1 r—— ——t,
1

Figure 2. Nested Domain Decomposition

To be more precise, the following algorithm should be investigated. Think?ng
first in terms of the simpler Poisson Problem Lu ={ where L denf)tes the Laplacian
operator on a convenient domain, e.g., first the unit square, assuming that one has a
nested domain decomposition such as that of Figure 2, and assuming that one has glo-
bal and local solutions u, and u respectively, the data flow of our proposed local to

global interaction algorithm is:
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For the biharmonic equations of the fluid corner subdomains one would have a similar
scheme although a number of interesting new domain decomposition questions con-
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grid points

cerning information exchange already arise:

(i)

(i)

Can we seek corrections to « and % simultaneously? Recall that there is a
strong coupling between the ¥ and w equations because the boundary condi-
tions on the vortices w depend on interior stream function values of .

Need we correct just boundary points (~ FAC), or also some or all interior
points, and how may we transfer the data to them most efficiently? In particu-
lar, in a parallel processing environment such as the hypercube, how do we

optimally allocate the computations?

Local Maximum Stream Function Intensities

TABLE 1

g

M=35 M=6

% 0.996 X 107! 0.10002

Yy  —229%X107% 224 %1078
¥y 6.55 X 10711 6.24 x 1071
Yy, —187 X107 173 x 10715
Vs 533X 1072 483 X 102
Ys —152X107# 134 x 107
¥y 4.34 X 1072 3.73 X 107%
Yy —124X107¥ 104 %1073
Vg 353X 107%® 288 x 1073
Yo —1.01 X107 —0.80 X 10742
Y, 288X107Y 223 x 107V
Y 819X 1072 621 X 10752
iz 234X107% 173 x107%
Yy —669Xx107% 481 %10
s 1.91 X 107% 1.34 X 107%
Y —545X1077° 372 x 10770
Y7 155X 10774 1.03 x 10774
g —442X1077 2388 x 10~
Yy 127X 107% 800 x 1078
Yy —3.61X1078 222 x 10788
Yy  103X107°2  6.18 X 10793

(local)
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(iii) What are the trade-offs between fully overlapped processing (e.g., keeping each
CPU fully occupied) and best parallelism in information passing?

Improved knowledge gained from the investigation of this algorithm would be
invaluable in application to other important geometries exhibiting subvortical sub-
domain structures. A particularly important one is flow about an airfoil, to which we
return below.

To fully understand subvortex generation and their subsequent dynamical evolu-
tion brings one to the full nonlinear unsteady Navier-Stokes equations and to one of
the most important and fundamental problems in Fluid Dynamics, namely, boundary
layer separation. Such subvortex sequences appear to be initiated by a sublayer
viscous-inviscid bursting effect at a wall separation point. In recent numerical experi-
ments in a cavity we have uncovered [7,8] a very rich subsequent dynamics, including
vortex pairs exhibiting multiple fusions and fissions as they travel on their way to a
final state. Some represent transient bifurcations whereas others, at sufficiently high
Reynolds numbers, persist, indicating Hopf bifurcations in the steady equations.

Specifically, there appear (78] to be critical Reynolds numbers (related, so let us
call them Re(A) and A (Re)) and Aspect ratios A = depth/width somewhere in the
range 2000 < Re < 10,000, 1 < A < 2 at which the final solutions are periodic
rather than steady. Thus the conjecture of [9], that multiple steady solutions in a
unit (A =1) cavity would not appear until Re > 5000, is perhaps better understood
as the occurrence of final unsteady periodic solutions. See Figure 3. Our results in
[7,8] show that going to aspect ratio A definitely greater than one is.a parameter
perhaps more important than greatly increasing Reynolds number. Our current work
[10] strongly suggests that the occurrence of such solutions is very dependent on the
nonlinearity in the equations, and even if missed on a too-coarse mesh, is fundamen-
tally not really mesh dependent. How to preassign or adaptively assign subdomain
decompositions appropriate to capture swirling, secondary, and even finer fluid struc-
ture detail such as that evident in Figure 3, raises many challenging domain decompo-
sition considerations for problems of unsteady flow.

Many other important physical domains may be treated by the multigrid cavity
scheme described above. In particular we may consider unsteady flow over an airfoil.
In order to study this and other geometries, a numerical grid generation procedure
must be employed. There are a large variety of grid generation techniques including
partial differential equation methods, algebraic methods and conformal transforma-
tions. We selected an elliptic partial differential equation method which allows the
construction of orthogonal coordinates on infinite domains. The selection of an elliptic
generation technique was also motivated by the aim of our research, namely, the solu-
tion of the unsteady Navier-Stokes equations which govern unsteady flows in the lam-
inar flow regime. The calculation of developing flow patterns governed by these equa-
tions requires that Poisson’s equation be solved at each time step of the computation.
The Poisson equation is by definition the generation equation for the coordinates of a
grid system when elliptic grid generation techniques are used. Thus, efforts to make
the solution of the generation equations more efficient also increases the efficiency of
the Navier-Stokes solution procedure.

The problem of grid generation around airfoils also requires the use of a method
allowing calculation of boundary-fitted coordinates. This simply means that the
method must allow a prescribed distribution of coordinate nodes along the boundary
of the grid, so that airfoil domains of a given shape can be generated. The most popu-
lar of such methods is the numerical technique of Thompson et al. [11] which allows
the construction of a non-orthogonal, boundary-fitted coordinate system using elliptic
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While the non-orthogonality of the method is not a severe

Figure 3. Final Oscillation at Re=10,000, A=2.
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drawback, it does require more computational work than comparable orthogonal sys-
tems, due to the extra terms in the transformed partial differential equations which

requires nine point stencil instead of the five point stencil used on orthogonal systems.

Also, extreme non-orthogonality can effect the truncation error of a solution.

generation equations.

The grid generation technique of Ryskin and Leal [12] allows the construction of

orthogonal boundary-fitted coordinate systems, when the weak constraint form of

In addition, it includes a procedure for construction of infinite coordinate sys-
Using this procedure the difficulties associated with outfiow boundary condi-

their method is employed. This method is relatively straight forward, yet quite
tions on conventional domains can be avoided.

robust.
tems.

The orthogonal grid generation equations, being elliptic, may of course be solve‘d
numerically by a variety of schemes. In {12] an ADI method was employed, whereas 1n
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(13] an SOR scheme was used. Here we describe a Multigrid scheme [14] which, as
mentioned above, also has the advantage of providing efficient solutions to the flow
equations themselves. It has enabled [14] remarkable agreement with visualizations of
physical flows about airfoils [15]. :

To describe this adaptation of the cavity multigrid solver scheme to flow about
an airfoil, let us direct the reader to Figure 4. Briefly (more detail will be given in
[14]), we first analytically map the exterior domain about the airfoil onto a more con-
venient interior domain. For the NACA 0015 airfoil, the domain boundary is given by

y=4% 5%5 (0.2969X* — 0.1260X — 0.3516X? + 0.2843X3 + 0.1015X%)

where t =0.15. Under the inverse Joukowski map the boundary becomes nearly cir-
cular. This is advantageous in allowing us good initial guesses for the orthogonal grid
coordinates x and y. The X and Y coordinates must in fact be shifted somewhat
(see [13]) in the physical domain to provide the most circular-like image in the auxili-
ary domain.

We may then develop an orthogonal grid in the auxiliary domain by employing a
multigrid elliptic solver based on the cavity computational domain. Following [12],

the equations defining the mapping are
a Ix a (1 ox
) ( =0

o€ W) * 3y (T oy =

O 40y, 0 (1 8yy_
ac (56) * 35 (T 9n) =°

Physical Domain Auxiliary Domain Computational Domain
Exterior of Airfoil Near Circular Cavity, A= 2
Z=X+iY L= x+ iy Multigrid Solver
Y £=0 ’ n
P
=1 n=2
=0 §=1 n=1 ﬂ-o\
X =0 =1 x
n=0
£=0 t=1 ¢
Analytic Map Numerical Mapping
Inverse Joukowski EHiptic Orthogonal

Grid Generation

L

172
G = z - (22-1)

Figure 4. Multigrid Calculation of Boundary-Fitted Coordinates
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where the distortion function is given by
by _ (qhyg)*

f(f:") = .l-IT (x62+y52)y,

with h; and h, denoting the scale factors in the & and n directions, respectively.
The distortion function specifies the ratio of the sides of a small rectangle in the auxi-
liary domain which is the image of a small square in the computational domain.

The mapping equations are discretized using second order accurate difference for-
mulas. Stencil coefficients can be precalculated and stored for efficiency. The compu-
tational procedure for calculation of the orthogonal grid is then as follows. First, one
makes initial guesses of x and y on the boundary of the computational cavity
domain. These x, y values on the boundary of the cavity are then interpolated
throughout this computational domain. From them (and their differences) the distor-
tion function f(§,7) may be found. It was more efficient to compute f just on the
boundary and then interpolate (so-called weak constraint method) f to the interior.
For this, formulae such as f(§,n) = £€(1,9) may be used so that =0 at £=0
which corresponds to the singularity at oo in the physical domain. Note that use of
such a weak constraint does, however, affect the relaxation steps in the multigrid solu-
tion of the grid equations. Continuing, using these values of f in the elliptic mapping
equations, the cavity multigrid solver with Dirichlet boundary conditions gives new

values for x(§,1), y(§,1). An orthogonality check then determines whether another f,
X,y iteration is needed.

Once an orthogonal grid is established by the above algorithm, one returns by
inverse map

X =

0O =

X 1 y
x+—=), Y==(y —
(+%), Y=2( -5
from the auxiliary domain to the physical domain. The resultant physical grid is
orthogonal. Figure 5 shows such a grid about an NACA 0015 airfoil, and the
corresponding auxiliary domain and the computational cavity domain.

By use of appropriate boundary conditions for the stream function ¥ and vorti-
city w, full unsteady Navier-Stokes flow about an airfoil may be computed in the cav-
it:y and then returned by the above mappings to the physical domain. Space limita-
tions prevent a full detailing of this procedure here, see [14]. Briefly, the Multigrid

Physical Domain Auxiliary Domain Computational Domain

Figure 5. Numerically Generated Grids
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solver yields the stream function values, an ADI time-marching scheme enabled vorti-
city transport. Examples of the output follow, see Figure 6. Here an angle of attack
a = 40deg was simulated. Note that vortex splitting and the vortex subdomain struc-
ture near the airfoil is remarkably well resolved. The comparison is to physical simu-
lations taken from [15].
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